МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент образования Вологодской области

УПРАВЛЕНИЕ ОБРАЗОВАНИЯ МЭРИИ ГОРОДА ЧЕРЕПОВЦА

МАОУ "СОШ № 6"

РАССМОТРЕНО Методическим объединением учителей естественно-математического цикла

Руководитель МО_Бушманова Н.Н.

Протокол №1

от "26" августа2022 г.

СОГЛАСОВАНО Заместитель директора

__Бушманова Н.Н.

Протокол №1

от "26" августа 2022 г

Приказ №1

от "29" августа 2022 г

УТВЕРЖДЕНО

Директор

для документов

Бакатова А.В

РАБОЧАЯ ПРОГРАММА

Учебный предмет «Информатика»

для учащихся 10-11 классов (информационно-технологический профиль)

Составитель: Ширяева Елена Ивановна

Введение

Программа по информатике для старшей школы составлена в соответствии с: требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); примерной основной образовательной программы среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию).

В программе соблюдается преемственность с федеральным государственным образовательным стандартом основного общего образования; учитываются возрастные и психологические особенности школьников, обучающихся на ступени основного общего образования, учитываются межпредметные связи.

Рабочая программа по предмету «Информатика» (углубленный уровень) для 10-11 класса составлена на основе авторской программы К.Ю. Полякова, Е.А.Еремина.

Главной целью изучения учебного предмета «Информатика» на базовом и углубленном уровнях среднего общего образования — обеспечение дальнейшего развития информационных компетенций выпускника, готового к работе в условиях развивающегося информационного общества и возрастающей конкуренции на рынке труда.

Основными задачами реализации программы учебного предмета «Информатика» (углубленный уровень) в старшей школе являются:

- ✓ освоение и систематизация знаний, относящихся к математическим объектам информатики; построению описаний объектов и процессов, позволяющих осуществлять их компьютерное моделирование;
- ✓ овладение умениями строить математические объекты информатики, в том числе логические формулы и программы на формальном языке, удовлетворяющие заданному описанию; использовать общепользовательские инструменты и настраивать их для нужд пользователя;
- ✓ развитие алгоритмического мышления, способностей к формализации, элементов системного мышления;
- ✓ воспитание культуры проектной деятельности, в том числе умения планировать свою деятельность, работать в коллективе; чувства ответственности за использование результатов своего труда, установки на позитивную социальную деятельность в информационном обществе, недопустимости действий, нарушающих правовые и этические нормы работы с информацией;
- ✓ приобретение опыта создания, редактирования, оформления, сохранения, передачи информационных объектов различного типа с помощью современных программных средств; построения компьютерных моделей, коллективной реализации информационных проектов, преодоления трудностей в процессе интеллектуального проектирования, информационной деятельности в различных сферах.

Данная программа углублённого курса по предмету «Информатика» основана на учебнометодическом комплекте (далее УМК), обеспечивающем обучение курсу информатики в соответствии с Федеральным государственным образовательным стандартом среднего (полного) общего образования (далее — ФГОС), который включает в себя учебники:

- «Информатика. 10 класс. Базовый и углубленный уровень»
- «Информатика. 11 класс. Базовый и углубленный уровень» завершенной предметной линии для 10–11 классов. Представленные учебники являются ядром целостного УМК, в который, кроме учебников, входят: □ данная авторская программа по информатике;

- компьютерный практикум в электронном виде с комплектом электронных учебных средств, размещённый на сайте авторского коллектива: http://kpolyakov.spb.ru/school/probook.htm
- электронный задачник-практикум с возможностью автоматической проверки решений задач по программированию: http://informatics.mccme.ru/course/view.php?id=666
- материалы для подготовки к итоговой аттестации по информатике в форме ЕГЭ, размещённые на сайте материалы, размещенные на сайте http://kpolyakov.spb.ru/school/ege.htm; □ методическое пособие для учителя;
- комплект Федеральных цифровых информационно-образовательных ресурсов (далее ФЦИОР), помещенный в коллекцию ФЦИОР (http://www.fcior.edu.ru);
- сетевая методическая служба авторского коллектива для педагогов на сайте издательства http://metodist.lbz.ru/authors/informatika/7/.

Учебники «Информатика. 10 класс» и «Информатика. 11 класс» разработаны в соответствии с требованиями ФГОС, и с учетом вхождения курса «Информатика» в 10 и 11 классах в состав учебного плана в объеме 68 часов (базовый курс), 136 часов (расширенный курс) или 272 часа (углублённый курс).

Информатика рассматривается авторами как наука об автоматической обработке данных с помощью компьютерных вычислительных систем. Такой подход сближает курс информатики с дисциплиной, называемой за рубежом *computer science*.

Программа ориентирована, прежде всего, на получение фундаментальных знаний, умений и навыков в области информатики, которые не зависят от операционной системы и другого программного обеспечения, применяемого на уроках.

Углубленный курс является одним из вариантов развития курса информатики, который изучается в основной школе (7–9 классы). Поэтому, согласно принципу спирали, материал некоторых разделов программы является развитием и продолжением соответствующих разделов курса основной школы. Отличие углубленного курса от базового состоит в том, что более глубоко рассматриваются принципы хранения, передачи и автоматической обработки данных; ставится задача выйти на уровень понимания происходящих процессов, а не только поверхностного знакомства с ними.

Учебники, составляющие ядро УМК, содержат все необходимые фундаментальные сведения, относящиеся к школьному курсу информатики, и в этом смысле являются цельными и достаточными для углубленной подготовки по информатике в старшей школе, независимо от уровня подготовки учащихся, закончивших основную школу. Учитель может перераспределять часы, отведённые на изучение отдельных разделов учебного курса, в зависимости от фактического уровня подготовки учащихся.

Одна из важных задач учебников и программы – обеспечить возможность подготовки учащихся к сдаче ЕГЭ по информатике. Авторы сделали всё возможное, чтобы в ходе обучения рассмотреть максимальное количество типов задач, включаемых в контрольноизмерительные материалы ЕГЭ.

Общая характеристика изучаемого предмета

Программа по предмету «Информатика» предназначена для изучения всех основных разделов курса информатики на базовом и углублённом уровнях. Она включает в себя три крупные содержательные линии:

• Основы информатики

- Алгоритмы и программирование
- Информационно-коммуникационные технологии.

Важная задача изучения этих содержательных линий — переход на новый уровень понимания и получение систематических знаний, необходимых для самостоятельного решения задач, в том числе и тех, которые в самом курсе не рассматривались. Существенное внимание уделяется линии «Алгоритмизация и программирование», которая входит в перечень предметных результатов ФГОС. Для изучения программирования используется язык Руthon, на сайте поддержки учебника размещены также все материалы, необходимые для преподавания на языках Паскаль и С (С++).

Важной составляющей УМК является комплект Федеральных цифровых информационно-образовательных ресурсов (ФЦИОР). Комплект включает в себя: демонстрационные материалы по теоретическому содержанию, раздаточные материалы для практических работ, контрольные материалы (тесты); исполнителей алгоритмов, модели, тренажёры и пр.

Для полного освоения программы углублённого уровня отводится на изучение предмета «Информатика» по 4 часа в неделю в 10 и 11 классах (всего 136 часов в 10 классе и 136 часов в 11 классе).

Для организации исследовательской и проектной деятельности учащихся можно использовать часы, отведенные на внеурочную деятельность.

1. Планируемые результаты освоения учебного предмета.

Личностные, метапредметные и предметные результаты освоения предмета

1.1 Личностные результаты

- 1. сформированность мировоззрения, соответствующего современному уровню развития науки и техники;
- 2. сформированность основ саморазвития и самовоспитания в соответствии с общчеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 3. сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 4. воспитание толерантного сознания и поведения в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- 5. готовность к выражению гражданской позиции как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие

гуманистические и демократические ценности 6. готовность к служению Отечеству, его защите;

- 7. развитие навыков сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8. воспитание нравственного сознания и поведения на основе усвоения общечеловеческих ценностей;
- 9. готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 10. эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- 11. принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- 12. бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;
- 13. готовность и способность обучающихся к саморазвитию и личностному самоопределению, осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- 14. сформированность экологической культуры, экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
- 15. сформированность ответственного отношения к созданию семьи на основе осознанного принятия ценностей семейной жизни.

К личностным результатам, на становление которых оказывает влияние изучение курса информатики, можно отнести:

- ориентация обучающихся на реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести

диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;

- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- уважение ко всем формам собственности, готовность к защите своей собственности, осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем.

1.2 Метапредметные результаты

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД): коммуникативные, познавательные и регулятивные **Коммуникативные**:

- 1) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты; 2) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 3) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства; **Познавательные:**
- 4) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 5) умение определять назначение и функции различных социальных институтов;
- 6) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения. **Регулятивные:**
- 7) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 8) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

9) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;

На становление регулятивных универсальных учебных действий традиционно более всего ориентирован раздел курса «Алгоритмы и элементы программирования». А именно, выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
 оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

На формирование, развитие и совершенствование группы познавательных универсальных учебных действий более всего ориентированы такие тематические разделы курса как «Информация и информационные процессы», «Современные технологии создания и обработки информационных объектов», «Информационное моделирование», «Обработка информации в электронных таблицах», а также «Сетевые информационные технологии» и «Основы социальной информатики». При работе с соответствующими материалами курса выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого;
 спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия.

При изучении разделов «Информация и информационные процессы», «Сетевые информационные технологии» и «Основы социальной информатики» происходит становление ряда коммуникативных универсальных учебных действий. А именно, выпускники могут научится:

 осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;

- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств.

1.3 Предметные результаты

общего образования в соответствии с ФГОС СОО Ha уровне среднего представлены результаты базового и углубленного уровней изучения учебного «Информатика»; результаты изучения предмета уровня предмета ПО группам «Выпускник «Выпускник структурированы научится» получит возможность научиться».

и в основном общем образовании, группа результатов «Выпускник Как научится» представляет собой результаты, достижение которых обеспечивается учителем в отношении всех обучающихся, выбравших данный уровень обучения.

Группа результатов «Выпускник получит возможность научиться» обеспечивается учителем в отношении части наиболее мотивированных и способных обучающихся, выбравших данный уровень обучения.

Предметные результаты освоения учебного предмета «Информатика» на базовом уровне отражают:

- 1) сформированность представлений о роли информации и связанных с ней процессов в окружающем мире;
- 2) владение навыками алгоритмического мышления и понимание необходимости формального описания алгоритмов;
- 3) владение умением понимать программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня; знанием основных конструкций программирования; умением анализировать алгоритмы с использованием таблиц;
- владение стандартными приемами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ; использование готовых прикладных компьютерных программ по выбранной специализации;
- 5) сформированность представлений о компьютерно-математических моделях и необходимости анализа соответствия модели и моделируемого объекта (процесса); о способах хранения и простейшей обработке данных; понятия о базах данных и средствах доступа к ним, умений работать с ними;
- б) владение компьютерными средствами представления и анализа данных;
- 7) сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены и ресурсосбережения при работе со средствами информатизации; понимания основ правовых аспектов использования компьютерных программ и работы в Интернете

"Информатика" (углубленный уровень) - требования к предметным результатам освоения углубленного курса информатики должны включать требования к результатам освоения базового курса и дополнительно отражать:

1) владение системой базовых знаний, отражающих вклад информатики в формирование современной научной картины мира;

- 2) овладение понятием сложности алгоритма, знание основных алгоритмов обработки числовой и текстовой информации, алгоритмов поиска и сортировки;
- 3) владение универсальным языком программирования высокого уровня (по выбору), представлениями о базовых типах данных и структурах данных; умением использовать основные управляющие конструкции;
- 4) владение навыками и опытом разработки программ в выбранной среде программирования, включая тестирование и отладку программ; владение элементарными навыками формализации прикладной задачи и документирования программ;
- 5) сформированность представлений о важнейших видах дискретных объектов и об их простейших свойствах, алгоритмах анализа этих объектов, о кодировании и декодировании данных и причинах искажения данных при передаче; систематизацию знаний, относящихся к математическим объектам информатики; умение строить математические объекты информатики, в том числе логические формулы;
- 6) сформированность представлений об устройстве современных компьютеров, о тенденциях развития компьютерных технологий; о понятии "операционная система" и основных функциях операционных систем; об общих принципах разработки и функционирования интернет-приложений;
- 7) сформированность представлений о компьютерных сетях и их роли в современном мире; знаний базовых принципов организации и функционирования компьютерных сетей, норм информационной этики и права, принципов обеспечения информационной безопасности, способов и средств обеспечения надежного функционирования средств ИКТ;
- 8) владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними;
- 9) владение опытом построения и использования компьютерноматематических моделей, проведения экспериментов и статистической обработки данных с помощью компьютера, интерпретации результатов, получаемых в ходе моделирования реальных процессов; умение оценивать числовые параметры моделируемых объектов и процессов, пользоваться базами данных и справочными системами;
- 10) сформированность умения работать с библиотеками программ; наличие опыта использования компьютерных средств представления и анализа данных.

В результате изучения учебного предмета «Информатика» на уровне среднего общего образования:

Выпускник на углубленном уровне научится:

кодировать и декодировать тексты по заданной кодовой таблице; строить неравномерные коды, допускающие однозначное декодирование сообщений, используя условие Фано; понимать задачи построения кода, обеспечивающего по возможности меньшую среднюю длину сообщения при известной частоте символов, и кода, допускающего диагностику ошибок;

- строить логические выражения с помощью операций дизъюнкции, конъюнкции, отрицания, импликации, эквиваленции; выполнять эквивалентные преобразования этих выражений, используя законы алгебры логики (в частности, свойства дизъюнкции, конъюнкции, правила де Моргана, связь импликации с дизъюнкцией);
- строить таблицу истинности заданного логического выражения; строить логическое выражение в дизъюнктивной нормальной форме по заданной таблице истинности; определять истинность высказывания, составленного из элементарных высказываний с помощью логических операций, если известна истинность входящих в него элементарных высказываний; исследовать область истинности высказывания, содержащего переменные; решать логические уравнения;
- строить дерево игры по заданному алгоритму; строить и обосновывать выигрышную стратегию игры;
- записывать натуральные числа в системе счисления с данным основанием;
 использовать при решении задач свойства позиционной записи числа, в частности
 признак делимости числа на основание системы счисления;
- записывать действительные числа в экспоненциальной форме; применять знания о представлении чисел в памяти компьютера;
- описывать графы с помощью матриц смежности с указанием длин ребер (весовых матриц); решать алгоритмические задачи, связанные с анализом графов, в частности задачу построения оптимального пути между вершинами ориентированного ациклического графа и определения количества различных путей между вершинами;
- формализовать понятие «алгоритм» с помощью одной из универсальных моделей вычислений (машина Тьюринга, машина Поста и др.); понимать содержание тезиса Черча– Тьюринга;
- понимать и использовать основные понятия, связанные со сложностью вычислений (время работы и размер используемой памяти при заданных исходных данных; асимптотическая сложность алгоритма в зависимости от размера исходных данных); определять сложность изучаемых в курсе базовых алгоритмов;
- анализировать предложенный алгоритм, например определять, какие результаты возможны при заданном множестве исходных значений и при каких исходных значениях возможно получение указанных результатов;

- создавать, анализировать и реализовывать в виде программ базовые алгоритмы,
 связанные с анализом элементарных функций (в том числе приближенных вычислений), записью чисел в позиционной системе счисления, делимостью целых чисел; линейной обработкой последовательностей и массивов чисел (в том числе алгоритмы сортировки), анализом строк, а также рекурсивные алгоритмы;
- применять метод сохранения промежуточных результатов (метод динамического программирования) для создания полиномиальных (не переборных)
 алгоритмов решения различных задач; примеры: поиск минимального пути в ориентированном ациклическом графе, подсчет количества путей;
- создавать собственные алгоритмы для решения прикладных задач на основе изученных алгоритмов и методов;
- применять при решении задач структуры данных: списки, словари, деревья,
 очереди; применять при составлении алгоритмов базовые операции со структурами
 данных;
- использовать основные понятия, конструкции и структуры данных последовательного программирования, а также правила записи этих конструкций и структур в выбранном для изучения языке программирования;
- использовать в программах данные различных типов; применять стандартные и собственные подпрограммы для обработки символьных строк; выполнять обработку данных, хранящихся в виде массивов различной размерности; выбирать тип цикла в зависимости от решаемой подзадачи; составлять циклы с использованием заранее определенного инварианта цикла; выполнять базовые операции с текстовыми и двоичными файлами; выделять подзадачи, решение которых необходимо для решения поставленной задачи в полном объеме; реализовывать решения подзадач в виде подпрограмм, связывать подпрограммы в единую программу; использовать модульный принцип построения программ; использовать библиотеки стандартных подпрограмм;
 - применять алгоритмы поиска и сортировки при решении типовых задач;
- выполнять объектно-ориентированный анализ задачи: выделять объекты,
 описывать на формальном языке их свойства и методы; реализовывать объектно-ориентированный подход для решения задач средней сложности на выбранном языке программирования;

- выполнять отладку и тестирование программ в выбранной среде программирования; использовать при разработке программ стандартные библиотеки языка программирования и внешние библиотеки программ; создавать многокомпонентные программные продукты в среде программирования;
- инсталлировать и деинсталлировать программные средства, необходимые для решения учебных задач по выбранной специализации;
- пользоваться навыками формализации задачи; создавать описания программ,
 инструкции по их использованию и отчеты по выполненным проектным работам;
- разрабатывать и использовать компьютерно-математические модели;
 анализировать соответствие модели реальному объекту или процессу; проводить эксперименты и статистическую обработку данных с помощью компьютера;
 интерпретировать результаты, получаемые в ходе моделирования реальных процессов;
 оценивать числовые параметры моделируемых объектов и процессов;
- понимать основные принципы устройства и функционирования современных стационарных и мобильных компьютеров; выбирать конфигурацию компьютера в соответствии с решаемыми задачами;
- понимать назначение, а также основные принципы устройства и работы современных операционных систем; знать виды и назначение системного программного обеспечения;
- владеть принципами организации иерархических файловых систем и именования файлов; использовать шаблоны для описания группы файлов;
- использовать на практике общие правила проведения исследовательского проекта (постановка задачи, выбор методов исследования, подготовка исходных данных, проведение исследования, формулировка выводов, подготовка отчета);
 планировать и выполнять небольшие исследовательские проекты;
- использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение графиков и диаграмм;
- владеть основными сведениями о табличных (реляционных) базах данных, их структуре, средствах создания и работы, в том числе выполнять отбор строк таблицы,

удовлетворяющих определенному условию; описывать базы данных и средства доступа к ним; наполнять разработанную базу данных;

- использовать компьютерные сети для обмена данными при решении прикладных задач;
- организовывать на базовом уровне сетевое взаимодействие (настраивать работу протоколов сети TCP/IP и определять маску сети);
 - понимать структуру доменных имен; принципы IP-адресации узлов сети;
- представлять общие принципы разработки и функционирования интернетприложений (сайты, блоги и др.);
- применять на практике принципы обеспечения информационной безопасности,
 способы и средства обеспечения надежного функционирования средств ИКТ;
 соблюдать при работе в сети нормы информационной этики и права (в том числе авторские права);
- проектировать собственное автоматизированное место; следовать основам безопасной и экономичной работы с компьютерами и мобильными устройствами; соблюдать санитарногигиенические требования при работе за персональным компьютером в соответствии с нормами действующих СанПиН.

Выпускник на углубленном уровне получит возможность научиться:

- применять коды, исправляющие ошибки, возникшие при передаче информации; определять пропускную способность и помехозащищенность канала связи, искажение информации при передаче по каналам связи, а также использовать алгоритмы сжатия данных (алгоритм LZW и др.);
- использовать графы, деревья, списки при описании объектов и процессов окружающего мира; использовать префиксные деревья и другие виды деревьев при решении алгоритмических задач, в том числе при анализе кодов;
 - использовать знания о методе «разделяй и властвуй»;
- приводить примеры различных алгоритмов решения одной задачи, которые имеют различную сложность; использовать понятие переборного алгоритма;
- использовать понятие универсального алгоритма и приводить примеры алгоритмически неразрешимых проблем;

- использовать второй язык программирования; сравнивать преимущества и недостатки двух языков программирования;
 - создавать программы для учебных или проектных задач средней сложности;
- использовать информационно-коммуникационные технологии при моделировании и анализе процессов и явлений в соответствии с выбранным профилем;
- осознанно подходить к выбору ИКТ-средств и программного обеспечения для решения задач, возникающих в ходе учебы и вне ее, для своих учебных и иных целей;
- проводить (в несложных случаях) верификацию (проверку надежности и согласованности) исходных данных и валидацию (проверку достоверности) результатов натурных и компьютерных экспериментов;
- использовать пакеты программ и сервисы обработки и представления данных,
 в том числе статистической обработки;
- использовать методы машинного обучения при анализе данных; использовать представление о проблеме хранения и обработки больших данных;
- создавать многотабличные базы данных; работе с базами данных и справочными системами с помощью веб-интерфейса.

2. Содержание учебного предмета

В содержании предмета «Информатика» в учебниках для 10-11 классов может быть выделено три крупных раздела:

І. Основы информатики

- Техника безопасности. Организация рабочего места
- Информация и информационные процессы
- Кодирование информации
- Логические основы компьютеров
- Компьютерная арифметика
- Устройство компьютера
- Программное обеспечение
- Компьютерные сети
- Информационная безопасность II. Алгоритмы и программирование
- Алгоритмизация и программирование
- Решение вычислительных задач
- Элементы теории алгоритмов

- Объектно-ориентированное программирование III. Информационнокоммуникационные технологии
 - Моделирование
 - Базы данных
 - Создание веб-сайтов 🛘 Графика и анимация
 - 3D-моделирование и анимация

Таким образом, обеспечивается преемственность изучения предмета в полном объёме на завершающей ступени среднего общего образования.

10 класс (136 часов) Углубленный уровень

Введение. Информация и информационные процессы. Данные

Информация и информация. Способы представления данных. Информация в природе. Человек, информация, знания. Свойства информации. Информация в технике. Различия в представлении данных, предназначенных для хранения и обработки в автоматизированных компьютерных системах и предназначенных для восприятия человеком. Передача информации. Обработка информации. Хранение информации.

Структура информации. Таблицы. Списки. Деревья. Графы.

Системы. Компоненты системы и их взаимодействие. Информационное взаимодействие в системе, управление. Разомкнутые и замкнутые системы управления.

Математическое и компьютерное моделирование систем управления.

Математические основы информатики Тексты и кодирование. Передача данных Знаки, сигналы и символы. Дискретное кодирование. Знаковые системы.

Равномерные и неравномерные коды. Префиксные коды. Условие Фано. Обратное условие Фано. Правило умножения. Декодирование. Алгоритмы декодирования при использовании префиксных кодов. Граф Ал.А. Маркова. Алфавитный подход к оценке количества информации.

Сжатие данных. Учет частотности символов при выборе неравномерного кода.

Оптимальное кодирование Хаффмана. Использование программ-архиваторов. Алгоритм

LZW.

Передача данных. Источник, приемник, канал связи, сигнал, кодирующее и декодирующее устройства.

Пропускная способность и помехозащищенность канала связи. Кодирование сообщений в современных средствах передачи данных.

Искажение информации при передаче по каналам связи. Коды с возможностью обнаружения и исправления ошибок.

Способы защиты информации, передаваемой по каналам связи. Криптография (алгоритмы шифрования). Стеганография.

Дискретизация

Измерения и дискретизация. Частота и разрядность измерений. Универсальность дискретного представления информации.

Аналоговые и дискретные сигналы.

Дискретное представление звуковых данных. Многоканальная запись. Размер файла, полученного в результате записи звука.

Дискретное представление статической и динамической графической информации.

Сжатие данных при хранении графической и звуковой информации.

Системы счисления

Системы счисления. Перевод целых и дробных чисел в другую систему счисления.

Свойства позиционной записи числа: количество цифр в записи, признак делимости числа на основание системы счисления. Двоичная система счисления.

Арифметические операции. Сложение и вычитание степеней числа 2. Достоинства и недостатки.

Восьмеричная система счисления. Связь с двоичной системой счисления. Арифметические операции. Применение.

Шестнадцатеричная система счисления. Связь с двоичной системой счисления. Арифметические операции. Применение.

Троичная уравновешенная система счисления. Двоично-десятичная система счисления.

Алгоритм перевода десятичной записи числа в запись в позиционной системе с заданным основанием. Алгоритмы построения записи числа в позиционной системе счисления с заданным основанием и вычисления числа по строке, содержащей запись этого числа в позиционной системе счисления с заданным основанием.

Арифметические действия в позиционных системах счисления.

Краткая и развернутая форма записи смешанных чисел в позиционных системах счисления. Перевод смешанного числа в позиционную систему счисления с заданным основанием.

Компьютерная арифметика. Особенности представления чисел в компьютере. Предельные значения чисел. Представление целых и вещественных чисел в памяти компьютера. Дискретность представления чисел. Программное повышение точности вычислений.

Хранение в памяти целых чисел. Целые числа без знака. Целые числа со знаком. Операции с целыми числами. Сравнение. Поразрядные логические операции. Сдвиги.

Хранение в памяти вещественных чисел. Операции с вещественными числами.

Кодирование текстов. Однобайтные кодировки. Стандарт UNICODE.

Кодирование графической информации. Цветовые модели. Растровое кодирование. Форматы файлов. Векторное кодирование. Трёхмерная графика. Фрактальная графика.

Кодирование звуковой информации. Оцифровка звука. Инструментальное кодирование звука. Кодирование видеоинформации.

Элементы комбинаторики, теории множеств и математической логики

Логические операции «НЕ», «И», «ИЛИ». Операция «исключающее ИЛИ». Операции «импликация», «эквиваленция». Штрих Шеффера. Стрелка Пирса.

Логические функции.

Логические выражения. Вычисление логических выражений. Диаграммы Венна.

Законы алгебры логики. Упрощение логических выражений. Эквивалентные преобразования логических выражений. Логические уравнения. Количество решений логического уравнения. Системы логических уравнений.

Построение логического выражения с данной таблицей истинности. Синтез логических выражений. Дизъюнктивная нормальная форма.

Конъюнктивная нормальная форма.

Построение выражений с помощью СДНФ. Построение выражений с помощью СКНФ.

Логические элементы компьютеров. Триггер. Сумматор. Построение схем из базовых логических элементов.

Множества и логические выражения. Задача дополнения множества до универсального множества.

Поразрядные логические операции.

Предикаты и кванторы.

Дискретные игры двух игроков с полной информацией. Выигрышные стратегии.

Дискретные объекты

Решение алгоритмических задач, связанных с анализом графов (примеры: построения оптимального пути между вершинами ориентированного ациклического графа; определения количества различных путей между вершинами).

Обход узлов дерева в глубину. Упорядоченные деревья (деревья, в которых упорядочены ребра, выходящие из одного узла).

Использование деревьев при решении алгоритмических задач (примеры: анализ работы рекурсивных алгоритмов, разбор арифметических и логических выражений). Бинарное дерево. *Использование деревьев при хранении данных*.

Использование графов, деревьев, списков при описании объектов и процессов окружающего мира.

Алгоритмы и элементы программирования Алгоритмы и структуры данных

Алгоритмы. Анализ алгоритмов. Оптимальные линейные программы. Анализ алгоритмов с ветвлениями и циклами. Исполнитель Робот. Исполнитель Чертёжник. Исполнитель Редактор.

Ветвления. Условный оператор. Сложные условия.

Циклические алгоритмы. Цикл с условием. Поиск максимальной цифры числа. Алгоритм Евклида. Циклы с постусловием. Циклы по переменной. Вложенные циклы.

Алгоритмы исследования элементарных функций, в частности — точного и приближенного решения квадратного уравнения с целыми и вещественными коэффициентами, определения экстремумов квадратичной функции на отрезке.

Алгоритмы анализа и преобразования записей чисел в позиционной системе счисления.

Алгоритмы, связанные с делимостью целых чисел. Алгоритм Евклида для определения НОД двух натуральных чисел.

Алгоритмы линейной (однопроходной) обработки последовательности чисел без использования дополнительной памяти, зависящей от длины последовательности (вычисление максимума, суммы; линейный поиск и т.п.). Обработка элементов последовательности, удовлетворяющих определенному условию (вычисление суммы заданных элементов, их максимума и т.п.).

Массивы. Ввод и вывод массива. Перебор элементов. Алгоритмы обработки массивов. Поиск в массиве. Максимальный элемент. Реверс массива. Сдвиг элементов массива. Срезы массива. Отбор нужных элементов. Алгоритмы обработки массивов. Примеры: перестановка элементов данного одномерного массива в обратном порядке; циклический сдвиг элементов массива; заполнение двумерного числового массива по заданным правилам; поиск элемента в двумерном массиве; вычисление максимума и суммы элементов двумерного массива.

Вставка и удаление элементов в массиве.

Рекурсивные алгоритмы, в частности: нахождение натуральной и целой степени заданного ненулевого вещественного числа; вычисление факториалов; вычисление n-го элемента рекуррентной последовательности (например, последовательности Фибоначчи). Построение и анализ дерева рекурсивных вызовов. Возможность записи рекурсивных алгоритмов без явного использования рекурсии.

Сортировка одномерных массивов. Квадратичные алгоритмы сортировки (пример: сортировка пузырьком). Слияние двух отсортированных массивов в один без использования сортировки. Метод пузырька (сортировка обменами). Метод выбора. Сортировка слиянием. «Быстрая сортировка».

Алгоритмы анализа отсортированных массивов. Рекурсивная реализация сортировки массива на основе слияния двух его отсортированных фрагментов.

Алгоритмы анализа символьных строк, в том числе: подсчет количества появлений символа в строке; разбиение строки на слова по пробельным символам; поиск подстроки внутри данной строки; замена найденной подстроки на другую строку.

Построение графика функции, заданной формулой, программой или таблицей значений.

Алгоритмы приближенного решения уравнений на данном отрезке, например, методом деления отрезка пополам. Алгоритмы приближенного вычисления длин и площадей, в том числе: приближенное вычисление длины плоской кривой путем аппроксимации ее ломаной; приближенный подсчет методом трапеций площади под графиком функции, заданной формулой, программой или таблицей значений. Приближенное вычисление площади фигуры методом Монте-Карло. Построение траекторий, заданных разностными схемами. Решение задач оптимизации. Алгоритмы вычислительной геометрии. Вероятностные алгоритмы.

Целочисленные алгоритмы. Решето Эратосфена. «Длинные» числа. Квадратный корень.

Структуры. Работа с файлами. сортировка структур.

Словари. Алфавитно-частотный словарь.

Стек. Использование списка. Вычисление арифметических выражений с помощью стека. Проверка скобочных выражений. Очереди, деки.

Деревья. Деревья поиска. Обход дерева. Использование связанных структур. Вычисление арифметических выражений с помощью дерева. Хранение двоичного дерева в массиве. Модульность.

Графы. «Жадные» алгоритмы. Алгоритм Дейкстры. Алгоритм Флойда-Уоршелла. Использование списков смежности.

Сохранение и использование промежуточных результатов. Метод динамического программирования. Поиск оптимального решения. Количество решений.

Представление о структурах данных. Примеры: списки, словари, деревья, очереди. *Хэш-таблицы*.

Языки программирования

Подпрограммы (процедуры, функции). Параметры подпрограмм. Рекурсивные процедуры и функции.

Процедуры. Процедуры с параметрами. Локальные и глобальные переменные. Функции. Вызов функции. Возврат нескольких значений. Логические функции. Рекурсия. Ханойские башни. Использование стека. Анализ рекурсивных функций.

Логические переменные. Символьные и строковые переменные. Операции над строками. Символьные строки. Операции со строками. Поиск в строках. Примеры обработки строк. Преобразование число-строка. Строки в процедурах и функциях. Рекурсивный перебор.

Двумерные массивы (матрицы). *Многомерные массивы*. Матрицы. Обработка элементов матрицы.

Средства работы с данными во внешней памяти. Файлы. Работа с файлами.

Неизвестное количество данных. Обработка массивов. Обработка строк.

Подробное знакомство с одним из универсальных процедурных языков программирования. Запись алгоритмических конструкций и структур данных в выбранном языке программирования. Обзор процедурных языков программирования.

Представление о синтаксисе и семантике языка программирования.

Понятие о непроцедурных языках программирования и парадигмах программирования. Изучение второго языка программирования.

Разработка программ

Этапы решения задач на компьютере.

Структурное программирование. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.

Методы проектирования программ «сверху вниз» и «снизу вверх». Разработка программ, использующих подпрограммы.

Библиотеки подпрограмм и их использование.

Интегрированная среда разработки программы на языке программирования Python.

Пользовательский интерфейс интегрированной среды разработки программ на языке программирования Python.

Введение в язык Python. Простейшая программа. Переменные. Типы данных. Размещение переменных в памяти. Арифметические выражения и операции.

Вычисления. Деление нацело и остаток. Вещественные значения. Стандартные функции. Случайные числа.

Особенности копирования списков в языке Python.

Сортировка в языке Python. Двоичный поиск.

Понятие об объектно-ориентированном программировании. Борьба со сложностью программ. Объектный подход. Объекты и классы. *Инкапсуляция, наследование, полиморфизм*. Создание объектов в программе. Скрытие внутреннего устройства.

Иерархия классов. Классы-наследники. Сообщения между объектами.

Программы с графическим интерфейсом. Особенности современных прикладных программ. Свойства формы. Обработчик событий. Использование компонентов (виджетов). Программа с компонентами. Ввод и вывод данных. Обработка ошибок. Совершенствование компонентов.

Модель и представление.

Среды быстрой разработки программ. Графическое проектирование интерфейса пользователя. Использование модулей (компонентов) при разработке программ.

Элементы теории алгоритмов

Формализация понятия алгоритма. Универсальные исполнители. Машина Тьюринга – пример абстрактной универсальной вычислительной модели. Тезис Чёрча—Тьюринга.

Другие универсальные вычислительные модели (пример: машина Поста). Универсальный алгоритм. Вычислимые и невычислимые функции. Проблема остановки и ее неразрешимость. Алгоритмически неразрешимые задачи. Вычислимые и невычислимые функции. Нормальные алгоритмы Маркова.

Абстрактные универсальные порождающие модели (пример: грамматики).

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Асимптотическая сложность. Сложность алгоритмов поиска. Сложность алгоритма сортировки слиянием (MergeSort).

Примеры задач анализа алгоритмов: определение входных данных, при которых алгоритм дает указанный результат; определение результата алгоритма без его полного пошагового выполнения.

Доказательство правильности программ. Инвариант цикла. Доказательное программирование.

Сложность вычислений.

Математическое моделирование

Модели и моделирование. Иерархические модели. Сетевые модели. Адекватность.

Игровые модели. Игровые стратегии. Пример игры с полной информацией. Задача с двумя кучами камней.

Модели мышления. Искусственный интеллект. Нейронные сети. Машинное обучение. Большие данные.

Этапы моделирования. Постановка задачи. Разработка модели. Тестирование модели. Эксперимент с моделью. Анализ результатов.

Практическая работа с компьютерной моделью по выбранной теме. Проведение вычислительного эксперимента. Анализ достоверности (правдоподобия) результатов компьютерного эксперимента.

Использование дискретизации и численных методов в математическом моделировании непрерывных процессов. Моделирование движения. Движение с сопротивлением. Дискретизация. Компьютерная модель.

Использование сред имитационного моделирования (виртуальных лабораторий) для проведения компьютерного эксперимента в учебной деятельности. Математические модели в биологии. Модель неограниченного роста. Модель ограниченного роста. Взаимодействие видов. Обратная связь. Саморегуляция.

Имитационное моделирование. *Моделирование систем массового обслуживания*. Вероятностные модели. Методы Монте-Карло. Системы массового обслуживания. Модель обслуживания в банке.

Представление результатов моделирования в виде, удобном для восприятия человеком. Графическое представление данных (схемы, таблицы, графики).

Построение математических моделей для решения практических задач.

Компьютерный (виртуальный) и материальный прототипы изделия. Использование учебных систем автоматизированного проектирования.

Информационно-коммуникационные технологии и их использование для анализа данных Аппаратное и программное обеспечение компьютера

Аппаратное обеспечение компьютеров. Современные компьютерные системы. Персональный компьютер.

Многопроцессорные системы. Суперкомпьютеры. Параллельные вычисления. Распределенные вычислительные системы и обработка больших данных. Облачные вычисления. Мобильные цифровые устройства и их роль в коммуникациях. Встроенные компьютеры. Микроконтроллеры. Роботизированные производства.

Общие принципы устройства компьютеров. Принципы организации памяти. Выполнение программы.

Архитектура компьютера. Особенности мобильных компьютеров. Магистральномодульная организация компьютера. Взаимодействие устройств. Обмен данными с внешним устройствами.

Процессора. Арифметико-логическое устройство. Устройство управления. Регистры процессора. Основные характеристики процессора. Система команд процессора.

Память. Внутренняя память. Внешняя память. Облачные хранилища данных. Взаимодействие разных видов памяти. Основные характеристики памяти.

Устройства ввода. Устройства вывода. Устройства ввода/вывода.

Выбор конфигурации компьютера. Соответствие конфигурации компьютера решаемым задачам. Тенденции развития аппаратного обеспечения компьютеров.

Программное обеспечение (ПО) компьютеров и компьютерных систем. Классификация программного обеспечения. Многообразие операционных систем, их функции. Программное обеспечение мобильных устройств.

Модель информационной системы «клиент-сервер». Распределенные модели построения информационных систем. Использование облачных технологий обработки данных в крупных информационных системах.

Инсталляция и деинсталляция программного обеспечения. *Системное* администрирование.

Тенденции развития компьютеров. Квантовые вычисления.

Техника безопасности и правила работы на компьютере. Гигиена, эргономика, ресурсосбережение, технологические требования при эксплуатации компьютерного рабочего места. Проектирование автоматизированного рабочего места в соответствии с целями его использования.

Авторские права. Типы лицензий на программное обеспечение. Ответственность за незаконное использование ПО.

Применение специализированных программ для обеспечения стабильной работы средств ИКТ. Технология проведения профилактических работ над средствами ИКТ: диагностика неисправностей.

Системное программное обеспечение. Операционные системы. Драйверы устройств. Утилиты. Файловые системы.

Системы программирования. Языки программирования. Трансляторы. Отладчики. Профилировщики.

Подготовка текстов и демонстрационных материалов

Программы для обработки текстов. Технические средства ввода текста. Текстовые редакторы и текстовые процессоры. Технологии создания текстовых документов. Вставка графических объектов, таблиц. Использование готовых шаблонов и создание собственных.

Средства поиска и замены. Системы проверки орфографии и грамматики. Компьютерные словари и переводчики. Шаблоны. Рассылки. Вставка математических формул.

Многостраничные документы. Форматирование страниц. Колонтитулы. Оглавление. Режим структуры документа. Нумерация рисунков (таблиц, формул). Сноски и ссылки. Нумерация страниц. Разработка гипертекстового документа: определение структуры документа, автоматическое формирование списка иллюстраций, сносок и цитат, списка используемой литературы и таблиц. Правила оформления рефератов. Библиографическое описание документов. Коллективная работа с документами. Рецензирование текста. Онлайнофис. Правила коллективной работы.

Средства создания и редактирования математических текстов.

Технические средства ввода текста. Распознавание текста. *Распознавание устной речи. Настольно-издательские системы.*

Пакеты прикладных программ. Офисные пакеты. Программы для управления предприятием. Пакеты для решения научных задач. *Компьютерная верстка текста*.

Программы для дизайна и вёрстки. Системы автоматизированного проектирования.

Работа с аудиовизуальными данными

Технические средства ввода графических изображений. Ввод изображений. Разрешение. Цифровые фотоаппараты. Сканирование. Кадрирование изображений. Цветовые модели. Коррекция изображений. Исправление перспективы. Гистограмма. Коррекция цвета. Ретушь. Работа с областями. Выделение областей. Быстрая маска. Исправление «эффекта красных глаз». Фильтры.

Работа с многослойными изображениями. Текстовые слои. Маска слоя. Каналы. Цветовые каналы. Сохранение выделенной области.

Иллюстрации для веб-сайтов. Анимация.

Векторная графика. Примитивы. Изменение порядка элементов. Выравнивание, распределение. Группировка. Кривые. Форматы векторных рисунков. Ввод векторных рисунков. Контуры в GIMP.

Работа с векторными графическими объектами. Группировка и трансформация объектов.

Технологии ввода и обработки звуковой и видеоинформации.

Обработка мультимедийной информации. Обработка звуковой информации. Обработка видеоинформации.

Программы для создания презентаций. Содержание презентаций. Дизайн презентации. Макеты. Размещение элементов на слайде. Оформление текста. Добавление объектов. Переходы между слайдами. Анимация в презентациях.

Технологии цифрового моделирования и проектирования новых изделий. Системы автоматизированного проектирования. Разработка простейших чертежей деталей и узлов с использованием примитивов системы автоматизированного проектирования.

Аддитивные технологии (3D-печать).

Понятие 3D-графики. Проекции.

Работа с объектами. Примитивы. Преобразования объектов. Системы координат. Слои. Связывание объектов.

Сеточные модели. Редактирование сетки. Деление рёбер и граней. Выдавливание. Сглаживание. Модификаторы. Логические операции. Массив. Деформация.

Кривые. Тела вращения.

Отражение света. Простые материалы. Многокомпонентные материалы.

Текстуры. UV-проекция.

Рендеринг. Источники света. Камеры. Внешняя среда. Параметры рендеринга. Тени.

Анимация объектов. Редактор кривых. Простая анимация сеточных моделей.

Арматура. Прямая и обратная кинематика. Физические явления.

Язык VRML.

Электронные (динамические) таблицы

Технология обработки числовой информации. Ввод и редактирование данных. Автозаполнение. Форматирование ячеек. Стандартные функции. Виды ссылок в формулах. Фильтрация и сортировка данных в диапазоне или таблице. Коллективная работа с данными. Подключение к внешним данным и их импорт.

Решение вычислительных задач из различных предметных областей.

Компьютерные средства представления и анализа данных. Визуализация данных.

Точность вычислений. Погрешности измерений. Погрешности вычислений.

Решение уравнений. Приближённые методы. Метод перебора. Метод деления отрезка пополам. Использование табличных процессоров.

Дискретизация. Вычисления длины кривой. Вычисление площадей фигур.

Оптимизация. Локальный и глобальный минимумы. Метод дихотомии. Использование табличных процессоров.

Статистические расчёты. Свойства ряда данных. Условные вычисления. Связь двух рядов данных.

Обработка результатов эксперимента. Метод наименьших квадратов. Восстановление зависимостей. Прогнозирование

Базы данных

Основные понятия. Типы информационных систем. Транзакции. Таблицы. Индексы. Целостность базы данных.

Понятие и назначение базы данных (далее – БД). Классификация БД. Системы управления БД (СУБД). Таблицы. Запись и поле. Ключевое поле. Типы данных. Запрос.

Типы запросов. Запросы с параметрами. Сортировка. Фильтрация. Вычисляемые поля.

Многотабличные базы данных. Реляционная модель данных. Математическое описание базы данных. Нормализация.

Таблицы. Работа с готовой таблицей. Создание таблиц. Связи между таблицами. Запросы. Конструктор запросов. Критерии отбора.

Запросы с параметрами. Вычисляемые поля. Запрос данных из нескольких таблиц. Итоговый запрос. Другие типы запросов.

Формы. Отчеты.

Формы. Простая форма. Формы с подчинёнными. Кнопочные формы.

Отчёты. Простые отчёты. Отчёты с группировкой.

Проблемы реляционных БД. Нереляционные базы данных.

Экспертные системы.

Многотабличные БД. Связи между таблицами. Ссылочная целостность. Типы связей. Нормализация.

Подготовка и выполнение исследовательского проекта

Технология выполнения исследовательского проекта: постановка задачи, выбор методов исследования, составление проекта и плана работ, подготовка исходных данных, проведение исследования, формулировка выводов, подготовка отчета. Верификация (проверка надежности и согласованности) исходных данных и валидация (проверка достоверности) результатов исследования.

Статистическая обработка данных. Обработка результатов эксперимента.

Системы искусственного интеллекта и машинное обучение

Машинное обучение – решение задач распознавания, классификации и предсказания. Искусственный интеллект. Анализ данных с применением методов машинного обучения. Экспертные и рекомендательные системы.

Большие данные в природе и технике (геномные данные, результаты физических экспериментов, интернет-данные, в частности данные социальных сетей). Технологии их обработки и хранения.

Работа в информационном пространстве Компьютерные сети

Принципы построения компьютерных сетей. *Аппаратные компоненты компьютерных сетей*. *Проводные и беспроводные телекоммуникационные каналы*. Сетевые протоколы. Принципы межсетевого взаимодействия. Сетевые операционные системы.

Задачи системного администрирования компьютеров и компьютерных сетей.

Структуры (топологии) сетей. Обмен данными. Серверы и клиенты.

Локальные сети. Сетевое оборудование. Одноранговые сети. Сети с выделенными серверами. Беспроводные сети.

Интернет. Краткая история Интернета. Набор протоколов TCP/IP. Адресация в сети Интернет (IP-адреса, маски подсети). Система доменных имен. Адрес ресурса (URL). Тестирование сети.

Службы Интернета. Всемирная паутина. Технология WWW. Браузеры.

Веб-сайт. Страница. Статические и динамические веб-страницы. Вебпрограммирование. Системы управления сайтом.

Текстовые веб-страницы. Простейшая веб-страница. Заголовки. Абзацы. Специальные символы. Списки. Гиперссылки.

Оформление веб-страниц. Средства языка HTML. Стилевые файлы. Стили для элементов.

Рисунки, звук, видео. Форматы рисунков. Рисунки в документе. Фоновые рисунки. Мультимедиа.

Таблицы. Структура таблицы. Табличная вёрстка. Оформление таблиц.

Взаимодействие веб-страницы с сервером. Язык HTML. Динамические страницы.

Блоки. Блочная вёрстка. Плавающие блоки.

XML и XHTML.

Динамический HTML. «Живой» рисунок. Скрытый блок. Формы.

Размещение веб-сайтов. Хранение файлов. Доменное имя. Загрузка файлов на сайт.

Разработка веб-сайтов. Язык HTML, каскадные таблицы стилей (CSS). *Динамический HTML. Размещение веб-сайтов*.

Использование сценариев на языке Javascript. Формы. Понятие о серверных языках программирования.

Сетевое хранение данных. Облачные сервисы.

Личное информационное пространство. Организация личных данных. Нетикет. Интернет и право.

Деятельность в сети Интернет

Расширенный поиск информации в сети Интернет. Использование языков построения запросов.

Электронная почта. Обмен файлами (FTP). Форумы. Общение в реальном времени. Пиринговые сети. Информационные системы. Электронная коммерция. Интернет-магазины. Электронные платёжные системы.

Другие виды деятельности в сети Интернет. Сервисы Интернета. Геолокационные сервисы реального времени (локация мобильных телефонов, определение загруженности автомагистралей и т.п.); интернет-торговля; бронирование билетов и гостиниц и т.п.

Облачные версии прикладных программных систем.

Новые возможности и перспективы развития Интернета: мобильность, облачные технологии, виртуализация, социальные сервисы, доступность. *Технологии «Интернета вещей»*. Развитие технологий распределенных вычислений.

Социальная информатика

Информация и управление. Кибернетика. Понятие системы. Системы управления.

Информационное общество. Информационные технологии. «Большие данные».

Социальные сети – организация коллективного взаимодействия и обмена данными.

Проблема подлинности полученной информации.

Государственные электронные сервисы и услуги. Электронная цифровая подпись (ЭЦП). Мобильные приложения. Открытые образовательные ресурсы. Информационная культура. Информационные пространства коллективного взаимодействия. Сетевой этикет: правила поведения в киберпространстве.

Стандартизация и стандарты в сфере информатики и ИКТ докомпьютерной эры (запись чисел, алфавитов национальных языков, библиотечного и издательского дела и др.) и компьютерной эры (языки программирования).

Формула Хартли. Информация и вероятность. Формула Шеннона.

Передача данных. Скорость передачи данных. Обнаружение ошибок. Помехоустойчивые коды Сжатие данных. Алгоритм RLE. Префиксные коды. Алгоритм Хаффмана. Алгоритм LZW. Сжатие с потерями.

Информационная безопасность

Понятие информационной безопасности. Средства защиты информации в автоматизированных информационных системах (АИС), компьютерных сетях и компьютерах. Информационная безопасность в мире. Информационная безопасность в России.

Общие проблемы защиты информации и информационной безопасности АИС. Компьютерные вирусы и вредоносные программы. Заражение вредоносными программами. Типы вредоносных программ. Вирусы для мобильных устройств. Защита от вредоносных программ. Антивирусные программы. Брандмауэры. Меры безопасности.

Использование антивирусных средств.

Электронная подпись, сертифицированные сайты и документы. Правовые нормы использования компьютерных программ и работы в Интернете. Законодательство РФ в области программного обеспечения.

Техногенные и экономические угрозы, связанные с использованием ИКТ. Правовое обеспечение информационной безопасности.

Шифрование. Хэширование и пароли. Современные алгоритмы шифрования. Алгоритм RSA. Стеганография. Безопасность в интернете. Сетевые угрозы. Мошенничество. Шифрование данных. Правила личной безопасности в Интернете

3. Тематическое планирование

В планировании учитывается, что в начале учебного года учащиеся ещё не вошли в рабочий ритм, а в конце года накапливается усталость и снижается восприимчивость к новому материалу. Поэтому наиболее сложные темы, связанные с программированием, предлагается изучать в середине учебного года, как в 10, так и в 11 классе.

No	Тема	Количество часов / класс		
JN⊡		Всего	10 кл.	11 кл.
Вве	дение. Информация и информационные процессы. Даннь	ые.		
1-	Техника безопасности. Организация рабочего места	17	6	11
2.	Информация и информационные процессы			
Итого:		17	6	11
Ma	гематические основы информатики			
3.	Тексты и кодирование. Передача данных. Дискретизация. Системы счисления. Дискретные объекты.	14	14	
4.	Элементы комбинаторики, теории множеств и математической логики	10	10	
5.	Компьютерная арифметика	6	6	
Ито	ого:	30	30	
Инс	рормационно-коммуникационные технологии и их испол	ьзование для	анализа да	анных.
6.	Аппаратное обеспечение компьютера	9	9	
7.	Программное обеспечение компьютера. Подготовка текстов и демонстрационных материалов. Работа с аудиовизуальными данными	13	13	
8.	Решение вычислительных задач. Электронные (динамические) таблицы.	12	12	
9.	Базы данных	16		16
10.	Графика и анимация	12		12
11.	3D-моделирование и анимация	16		16
	Итого:	78	34	44
Алі	оритмы и элементы программирования			
12.	Алгоритмы и структура данных. Языки программирования. Разработка программ.	68	44	24
13.	Математическое моделирование	12		12
14.	Элементы теории алгоритмов	6		6
15.	Объектно-ориентированное программирование	15		15
	Итого:	101	44	57
Раб	ота в информационном пространстве			
16.	Компьютерные сети. Деятельность в сети Интернет.	9	9	
17.	Информационная безопасность. Социальная информатика	6	6	
18.	Создание веб-сайтов	18		18
Итого:		33	15	18
Итоговое повторение		13	7	6
	Итого на разм разма так	272	126	126
	Итого по всем разделам:	272	136	136

Требования к уровню подготовки выпускников

В результате изучения информатики и ИКТ на профильном уровне ученик должен

знать/понима

ть:

логическую символику;

- основные конструкции языка программирования;
- свойства алгоритмов и основные алгоритмические конструкции; тезис о полноте формализации понятия алгоритма;
- виды и свойства информационных моделей реальных объектов и процессов, методы и средства компьютерной реализации информационных моделей;
- общую структуру деятельности по созданию компьютерных моделей;
- назначение и области использования основных технических средств информационных и коммуникационных технологий и информационных ресурсов;
- виды и свойства источников и приемников информации, способы кодирования и декодирования, причины искажения информации при передаче; связь полосы пропускания канала со скоростью передачи информации;
- базовые принципы организации и функционирования компьютерных сетей;
- нормы информационной этики и права, информационной безопасности, принципы обеспечения информационной безопасности;
- способы и средства обеспечения надежного функционирования средств ИКТ;

77

уметь:

- выделять информационный аспект в деятельности человека; информационное взаимодействие в простейших социальных, биологических и технических системах;
- строить информационные модели объектов, систем и процессов, используя для этого типовые средства (язык программирования, таблицы, графики, диаграммы, формулы);
- вычислять логическое значение сложного высказывания по известным значениям элементарных высказываний;
- проводить статистическую обработку данных с помощью компьютера;
- интерпретировать результаты, получаемые в ходе моделирования реальных процессов;
- устранять простейшие неисправности, инструктировать пользователей по базовым принципам использования ИКТ;
- оценивать числовые параметры информационных объектов и процессов: объём памяти, необходимый для хранения информации; скорость передачи и обработки информации;
- оперировать информационными объектами, используя имеющиеся знания о возможностях информационных и коммуникационных технологий, в том числе создавать структуры хранения данных; пользоваться справочными системами и другими источниками справочной информации; соблюдать права интеллектуальной собственности на информацию;

• выполнять требования техники безопасности, гигиены, эргономики и ресурсосбережения при

работе со средствами информатизации, обеспечения надежного функционирования средств ИКТ;

<u>использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:</u>

- поиска и отбора информации, в частности, связанной с личными познавательными интересами, самообразованием и профессиональной ориентацией;
- представления информации в виде мультимедиа объектов с системой ссылок (например, для размещения в сети); создания собственных баз данных, цифровых архивов, медиатек;
- подготовки выступления, участия в коллективном обсуждении, фиксации его хода и результатов;
- личного и коллективного общения с использованием современных программных и аппаратных средств коммуникаций;
- соблюдения требований информационной безопасности, информационной этики и права.

Учебно-методическое и материально-техническое обеспечение образовательного процесса

- 1. Информатика. 10 класс. Базовый и углубленный уровни: учебник в 2 ч./ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 2. Информатика. 11 класс. Базовый и углубленный уровни: учебник в 2 ч./ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 3. Информатика. 10 класс. Углубленный уровень: учебник в 2 ч./ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 4. Информатика. 11 класс. Углубленный уровень: учебник в 2 ч./ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 5. Информатика. 10–11 классы. Базовый и углубленный уровни: методическое пособие/ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 6. Информатика. 10–11 классы. Углублённый уровень: программа для старшей школы К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 7. Информатика. 10–11 классы. Базовый и углубленный уровни: практикум./ К.Ю. Поляков, Е.А. Еремин. М.: БИНОМ. Лаборатория знаний, 2018.
- 8. Информатика. УМК для старшей школы: 10-11 классы (ФГОС). Методическое пособие для учителя. Углублённый уровень./ Бородин М. Н. М: БИНОМ. Лаборатория знаний, 2013.
- 9. Компьютерный практикум в электронном виде с комплектом электронных учебных средств, размещённый на сайте авторского коллектива: http://kpolyakov.spb.ru/school/probook.htm
- 10. Электронный задачник-практикум с возможностью автоматической проверки решений задач по программированию: http://informatics.mccme.ru/course/view.php?id=666
- **11.** Материалы для подготовки к итоговой аттестации по информатике в форме ЕГЭ, размещённые на сайте материалы, размещенные на сайте http://kpolyakov.spb.ru/school/ege.htm;
- 12. Методическое пособие для учителя: http://files.lbz.ru/pdf/mpPolyakov10-11fgos.pdf;
- 13. Комплект Федеральных цифровых информационно-образовательных ресурсов (далее ФЦИОР), помещенный в коллекцию ФЦИОР (http://www.fcior.edu.ru);
- **14**. Сетевая методическая служба авторского коллектива для педагогов на сайте издательства http://metodist.lbz.ru/authors/informatika/.